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Abstract

A new wireless communications system is being developed for the AMIGA project, an
extension to the Pierre Auger Observatory. In order to minimize the required data rate
and data frame size we explore the possibility of compressing part of the data using
a simple method with low memory and CPU requirements. The method proves to be
capable of saving more than 20% of the required transmission speed. By reducing the
data frame size, we are able to minimize the number of frames per second reducing
the overall error rate and allowing for the use of standard commercial technology with
minimal customization.
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1. Introduction

The Auger Muon Infill for the Ground Array (AMIGA) [2] project is an enhance-
ment to the Pierre Auger Observatory (PAO) [1] that requires a new communica-
tions system in order to avoid overloading the PAO original communications system.
AMIGA will generate data that is similar to that of PAO except that some extra infor-
mation will be sent when an event is detected.

The Pierre Auger Observatory can be viewed as a large, sparse coincidence detec-
tor. The detector is comprised of a large number of Surface Detectors (SD) capable of
precisely determine the moment at which a particle passes through them. This detected
particles are sub-products of the collision of a High Energy Particle (HEP) with the
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Earths atmosphere components. It is the coincidence between three or more SD what
may indicate a HEP event.

The coincidence detection is performed in a Central Data Acquisition System (CDAS)
and because of that some data must be transferred to this centralized facility in order
to evaluate the coincidence. The signal detected by the SD is filtered so that only a
signal with the proper shape is considered as a coincidence candidate, this candidates
being called T2. The data corresponding to the candidate event is stored temporarily
and a time tagged. Every second a list of T2 time tags is collected and sent to CDAS
for coincidence evaluation.

Although the centralized coincidence detection is the way PAO currently works,
the results presented here may be used for a distributed system, as long as the same
data is being transferred.

Potentially interesting events or candidates occur at random intervals independent
from each other so it is possible to consider the arrivals of T2 as a Poisson process and
the probability distribution would be represented by a decaying exponential, or as the
data is being discretely sampled, a geometric distribution.

In order to take advantage of this it can be useful to consider the difference between
time tags instead of the whole offset within the second as they are used currently in PAO
communication system.

Once the statistical model is parameterized it is possible to use information theory
to analyze possible compression strategies.

2. Data structure

Each T2 can be uniquely identified by its time tag and a SD identification. Addi-
tionally some extra information is included describing some characteristic of the event.
For this reason all the SD has to do is send a list of time tags with the corresponding
information. Each event is described in the list by a two field entry [3]:

Energy Microsecond time tag
4 bits 20 bits

The four ”energy” bits include some description of the event occurred at the listed
microsecond. The time tag indicates the amount of microseconds since the beginning
of the last second according to the GPS timing. To represent this number 20 bits are
needed. If the difference between a time tag and the previous is stored, the number
would be in average 20 times smaller as there are 20 entries to the list in average. This
would mean 16 bit in average, with a maximum of 20 bits. The 20 bits of the time tag
could be split in 4 parts, lets call them Most Significant Nibble (MSN), Middle Byte
(MB) and Least Significant Byte (LSB):

MSN MB LSB
4 bits 8 bits 8 bits

These timestamps are then packed in a list once a second. This list is comprised by
the corresponding GPS second followed by the time stamp entries:
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GPSSecond = TTag0
TTag1
TTag2

...
TTagn

The list is sent once per second, within frame along with protocol headers.

3. Information content

As a first step we eliminate the redundancy that comes from the data being stored
as an offset from the beginning of the GPS second. If the time elapsed between an
event and the next is considered, then it is a Poisson process we are looking at.

Each entry to the list becomes then:

∆TTn = TTagn − TTagn−1 (1)

When discretized by sampling, the exponential distribution becomes a geometrical
one. Considering that, the probability distribution is given by:

P (n) = (1− p)pn, n ≥ 0, 0 < p < 1 (2)

The information entropy of a discrete variable n, in bits is:

H = −
∑
n

P (n)log2[P (n)] (3)

In the case of the geometrical distribution, the entropy can be computed from the
closed form expression:

H = −log2(1− p)− p

1− p
log2(p) (4)

To obtain the value of p it is necessary to express ∆TS in a way that it represents
the variables as seen by the algorithm, i.e. not in actual time, but in sample time. This
is done by considering that at 220 samples per second, the average ∆TS represent:

λ =
1

∆TS × 220
(5)

and

p = e−λ (6)

From the available data, the average ∆TS = 45.9ms is obtained.
Filling all the values the information entropy is H = 17.05bit, which is the target

to be approached to, in the sense that an ideal compression method would result in an
average code length of 17.05 bits instead of 20 bits.

3



4. Optimal compression with Golomb coding

The Golomb code [5] is a statistical method for data compression. If a number n is
to be compressed, it is separated into a quotient q = b nmc and a remainder r = n− qm
so that n = mq + r. The value of q is coded in unary while r is coded with the help of
a third value c = dlog2me. The first 2c −m values ar coded as unsigned integers with
c− 1 bits while the rest are coded in c bits.

For this particular case it is possible to generate optimal Golomb code [4] for p and
m satisfying:

pm + pm+1 ≤ 1 < pm + pm−1 (7)

In order to produce the Golomb code it is necesary split the input value in two parts,
as briefly explained previusly. The way to split the input is defined by them parameter,
following the conventions in [5], as we will from now on:

m =

⌈
− log2(1 + p)

log2(p)

⌉
(8)

The resulting value ism = 33434, with which, an optimal code should be obtained.

5. Simplified alternative with Rice coding

Golomb coding uses a tunable parameter m to divide an input value into two parts:
q, the result of a division by m, and r, the remainder.

In the case of a Golomb code where m = 2k, for any integer k, it is called a Rice
code, which is much simpler to code and decode. In short, in Rice coding, the most
significant part of the variable is coded using unary coding while the least significant
is stored unmodified. In the particular case of the data we are dealing with, we found
that m = 33434 = 215.03 which turns out to be very convenient, because it is almost
a power of two. In fact, as will be shown later, using m = 215 has negligible impact
over the compression efficiency.

For the Rice code, the two parts, q which is coded, and the reminder r, are repre-
sented by:

q(n) =
⌊ n
m

⌋
(9)

r(n) = n− q(n)m (10)

The greatest advantage of using a value of m that is a power of two, is not only that
makes the algorithm simpler, but also that such division is achieved by shifting bits and
the remainder is left untouched.

In practice, Rice coding can be implemented by just taking the 5 most significant
bits, and storing them using unary coding, and just storing the rest of the bits unmodi-
fied.

With unary coding, for any symbol n, the code length Ln can be easily calculated
as Ln = n + 1 and the code lengths of all symbols along with its probability P (n)
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of occurrence will give the expected size S for a large sample. If the alphabet can be
represented with b bits, then N = 2b, codes can be generated, and:

b = dlog2(m)e (11)

The general formula for the compressed size a given number of bits is given by:

S =

N−1∑
n=0

L(n)P (n) =

N−1∑
n=0

(n+ 1)(1− p)pn (12)

Where now:
λ =

1

∆TS × 2b
(13)

It is very easy to compute the summation with a mathematical software, but with a
little algebra, and using the formula for the differentiation of the geometric series, it is
possible to get a closed form expression:

S =
1− pN+1

1− p
− (N + 1)pN (14)

For m = 215 and p computed with λ from equation 13, then S = 2.078 which
added to the 15 uncompressed bits, gives 17.078 for a variable with an information
entropy of 17.050 bits. Clearly, Rice coding is very close to the ideal.

5.1. Further simplification

There is an option to code q with a shorter unary code. For Huffmans algorithm
to generate a unary code for an exponentially distributed variable, it is necessary that
p < 1

2 , which gives:

P (n) >
∑

k=n+1

P (k) (15)

This means that for any given value, its probability is higher than the sum of all
the higher values. This holds already for m as we have calculated before, and also for
larger values.

If we were willing to sacrifice some compression efficiency, the compression algo-
rithm could be even simpler if only the 4 most significant bits are to be compressed.
This choice would allow to just copy the 16 least significant bits, which are two whole
bytes, and store the 4 most significant bits, or half byte, with unary coding. In terms of
the Golomb-Rice algorithm, taking the 4 most significant bits means shifting 16 bits to
the right, also equivalent to dividing by m = 216.

Using equation 14 and taking b = 4, those 4 bits can be compressed to 1.37 bits.
Adding the uncompressed 16 bits, the result is 17.37 bits instead of 17.05, which is not
bad considering the great simplification.
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6. Near optimal compression with Rice coding

We have so far analyzed optimal compression using Golomb coding, and alterna-
tively Rice coding taking advantage of the fortunate situation that m ' 215. But as we
are going to show, using:

m ≤
⌈
− log2(1 + p)

log2(p)

⌉
(16)

also leads to results very close to optimal, with the advantage that the results are
good even for geometrical distributions where m 6= 2k for integer k.

We have stated that the Huffman algorithm generates a code of length n + 1 for n
if p < 1

2 . If p ≤ 1
2 then the Golomb algorithm can be used, but we have also seen that

Rice coding is simpler to implement.
For p ≤ 1

2 the Huffman algorithm generates a code of the same length s(n) for
various values. This length for a given value n is given by:

s(n) =

(⌈
n+ 1

2l

⌉
+ l

)
(1− p)pn (17)

l = b−B + blog2mc (18)

with B = 20 being the amount of bits used for uncompressed coding and b the
amount of bits taken for compression.

If l = 1 then both n = 0 and n = 1 will be coded with length c(n) = 2 and n = 2
and n = 3 with c(n) = 3 and so on.

7. Compression of the ”Energy” nibble

The field comprised by the 4 most significant bits of the T2 list entry is called
”Energy”. These are in fact tag bits for the time stamp that cannot be easily modeled.
In any case, this nibble has very simple statistics:

Table 1: probability for the values of the ”Energy” nibble
Nibble value Probability

1 0.878
9 0.122

other < 10−5

We will only consider the compression in the case of the values 1 and 9, since
not using compression otherwise should have no sensible impact due to the extremely
low probability. Also note that although in both 9 and 1, the least significant bit is 1,
masking it is of no use, as there ares still only 2 values considered.

The actual entropy of this field, as computed with equation 3, is H(Energy) =
0.519, about half a bit. This suggests that using a bit to code the nibble, is already a
waste. We will consider then packing more than one entry and coding those groups of
bits with Huffman’s algorithm.
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Table 2: coding of the ”Energy” nibble taken in pairs
Energy pair Probability Permutations Code Code length Code frequency

1,1 0.771 1 1 1 0.771
1,9 0.107 2 011,010 3 0.214
9,9 0.015 1 00 2 0.015

Considering the code length and its probability as before, we can expect a coded
size of 1.44bit for every 2 entries, giving an average of 0.72bits/entry which is much
better than 4 but still high compared to the information entropy.

By packing in groups of four, the result is as follows:

Table 3: coding of the ”Energy” nibble taken in groups of 4
Energy pair Probability Permutations Code length Code frequency

1,1,1,1 0.595 1 1 0.595
1,1,1,9 0.082 4 4 0.330
1,1,9,9 0.011 6 5.67 0.069
1,9,9,9 0.002 4 6 6.3× 10−3

9,9,9,9 0.002 1 4 2.0× 10−4

The expected average code size is 2.34bit every 4 entries, giving 0.585bit/entry
which can be considered reasonably efficient.

8. Method comparison

With a proper metric it is possible to compare the presented methods to evaluate
their efficiency. We should bear in mind that the full efficiency is given by the entropy,
which is H = 17.05bit in this case, representing an efficiency η = 1 , and that 20bit
means η = 0. To get a clear representation we will consider how many bits in average,
from the compressible are effectively compressed by each method. The compression
efficiency ηc is then given by:

ηc =
uncompressed size− compressed size

uncompressed size− entropy
(19)

The metric can then be used to compare the methods for a large number of entries.
The result is shown in table 4 showing that the ”overrated”(m ≤ 214) is as good as the
”strict” (m = 215) Rice, with the advantage of being more flexible, and both are better
than ”underrated” (m = 216) Rice.

A similar comparison can be made for the ”Energy” nibble.

8.1. Performance for short T2 lists

As the actual T2 lists are short, it should be considered that the final compressed
list must be stored in an integer number bytes, and the padding bits will represent a
non-negligible part. It has been stated before that the arrival of potential events (T2) is
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Table 4: compression method comparison for ”large” T2 lists
Method m Expected size Efficiency

Rice 215 17.078 0.9905
Underrated Rice 216 17.370 0.8915
Overrated Rice 214 17.078 0.9905

Table 5: compression method comparison for ”large” Energy nibble lists
Method Expected size Efficiency
Singlets 1.122 0.8267

Pairs 0.722 0.9418
Quartets 0.586 0.9807

a Poisson process and considering a fixed interval of 1 second, the probability density
function is a Poisson distribution.

It can be seen in figure 1 that the Poisson distribution fits very well the data. It is
important to notice that in order to make the comparison it is necessary to consider an
extra T2 generated by the cut of the list at the beginning of each second.

f(k;λ) =
λke−λ

k!
(20)

It is clear that the probability of the list being 21 entries long is essentially as likely
as 19 or 23, and actually not very much likely that being 15 or 25. In order to properly
analyze all these possibilities the compression efficiency must be considered for the
average arrival time corresponding to each list size.

In order to fully account for the compression of various list lengths, the previously
described method can be used. Lets call the length of a T2 list k, then its probability
P (k) of occurrence is given by equation 20. From now on Rice coding will be consid-
ered so its compressed size S(k) is given by equation 14, and equation 13 should be
modified to reflect the arrival interval for that second, so it is a function of k:

λ(k) =
k

2b
(21)

The size ST of a large number of compressed short T2 lists would be given by:

ST =

∞∑
k=1

P (k)S(k) (22)

It is also possible to do this using a different value of m for different list length,
making b also a function of k, so that for equation 14:

N(k) = 2b(k) (23)

A comparison in table 6 showing that b = 5 is the best solution, in concordance
with what was calculated in section 5.
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Figure 1: Poisson probability distribution function and histogram of the real data.

Table 6: Compression performance of Rice coding for short T2 lists with different values of m
m Expected size Efficiency
4 17.382 0.8876
5 17.100 0.9830
6 17.616 0.8081

m(k) 17.195 0.9508

The overall performance with Rice coding for the time stamps and taking pairs for
compressing the ”Energy” nibble, the total 24 bits can be compressed, in average, to
17.100bits + 0.722bits = 17.822bits from an information entropy of 17.050bits +
0.519bits = 17.569bits and an overall efficiency of ηc = 0.9607. This represents a
reduction of about 25% of the T2 payload.

9. Conclusions

We have studied the possibility of compressing the T2 lists that comprise the bulk
of the PAO data carried by the communications system. Several methods were stud-
ied focusing in compression performance and implementation simplicity, and showing
that with very low computational cost it should be possible to save about 25% of the
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payload traffic, increasing the number of stations per channel or freeing radio time for
retransmissions. The strength of the method relies on the lack of need of a compression
dictionary, so it can be used for small pieces of data for which the size of a dictionary
would be too large in comparison. Additionally, the packet size could be reduced to
help the implementation of a communications system based on the IEEE 802.15.4 pro-
tocol which allows for a payload of 125 Bytes, smaller than the 150 Bytes from the
original PAO design. The described method can be also used for any exponentially
distributed variable to assess the convenience of utilizing compression.
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